Towards multi-core execution time
distributions

Michael de Lang

michael.delang@student.uva.nl

August 18, 2019, 28 pages

Supervisor: Sebastian Altmeyer
Host organisation: Universiteit van Amsterdam

UNIVERSITEIT VAN AMSTERDAM

FACULTEIT DER NATUURWETENSCHAPPEN, WISKUNDE EN INFORMATICA
MASTER SOFTWARE ENGINEERING
http://www.software-engineering-amsterdam.nl

mailto:michael.delang@student.uva.nl
http://www.software-engineering-amsterdam.nl

Contents

Abstract
1 Introduction
1.1 Problem Statement
1.2 Solution Outline
2 Background
21 WCET
2.2 Applications used by our framework
2.3 Edify,
3 Accuracy of SE vs FS mode
4 State-space framework analysis
4.1 State-space framework oL Lo oL
4.2 Benchmark software setup
5 Measurements using framework for PapaBench
6 Discussion
6.1 Task scheduling oo
6.2 Answering Research Questions
6.3 Threats to validity oo
6.4 Further research,
Bibliography

= W

o o ot G

13
13
15

20

24
24
24
25
26

27

Abstract

Embedded software is increasingly run on multi-core hardware, resulting in a more difficult to estimate
worst case execution time. Multi-core programs, unlike single-core programs, have extra factors that
influence execution times among which memory and disk contention and shared caches. Our research
focuses on three things in this problem space: What trade-offs exist in simulating only part of the
state-space, which simulation mode of gem4 can best be used in large state-space settings and what is
the feasibility of using gem5 in multi-core execution time analysis. Building on top of Edify, we iterate
over variables influencing execution times and the order in which tasks are executed and which cores.
We cut these into two separate steps: the variables influencing times and then permuting over task
order, using the output of the first as input for the second step. This reduces the state-space to an
acceptable level and allows us to then validate the accuracy by executing another variables influencing
times step with the output of step 2 as input for this validation. The software we use in our simulations
is PapaBench, a free Real-Time benchmark, designed specifically for dual-core benchmarking. For
simulating, we use gemd and distribute the runs over multiple cores on a supercomputer. In System-
call Emulation mode, gem$ is easily distributed. To determine the fitness of System-call Emulation
mode for our research, we simulate TACLeBench in System-call Emulation mode and Full System
mode. We find that System-call Emulation mode offers the most deterministic results, has very
explainable differences with Full System mode and is in most cases nearly as accurate as Full System
mode. Moreover, our results for the state-space analysis show that the capability to make a lot of
simulations is available in modern day technology, however it is not enough to do full state-space
simulations. Furthermore, reducing the state-space as proposed leads to less accurate results. Out of
these experiments we also find some shortcomings in gemd and our approach: unable to create custom
interrupts and hooking simulated hardware to trigger these, lack of a shared memory mechanism in
PapaBench and allowing task order permutations that would not occur in normal usage of PapaBench.

Chapter 1

Introduction

Worst case execution time measurements are made because some systems, such as automotive or
aerospace systems, require tasks to be completed within a certain time frame. There are two general
classes of methods to estimate WCET. One is to measure actual execution times on either real
hardware or in simulations, this is called dynamic timing analysis. However, it is difficult to determine
if the measured execution times are worst-case or not, as well as the hardware required to do enough
measurements in an acceptable time-frame is high. The other is analysing WCET based on static
analysis, for example Control Flow Analysis. Static analysis often over-approximate the WCET,
resulting in a decision to use more powerful than needed hardware to ensure execution time demands
are being met.

Moreover, most WCET analyses happen on single-core systems, while multi-core systems are be-
coming a must even in embedded systems. The state-space for single-core systems with WCET
depends on scheduling policy, system input, system state and system interference. Multi-core WCET
estimation adds more to this list: which tasks are scheduled on which cores, sharing (some) caches
and more interference between the cores due to memory and I/O contention. Given these variables,
it is easy to conclude that the state-space is simply too big to use a brute-force approach into getting
a WCET distribution.

In this thesis, we re-examine this conclusion. Due to the expanded availability of machines with high
CPU core counts in the cloud and having simulation tools available to simulate multi-core systems,
we believe that there is a possibility that the conclusion does not hold anymore. Additionally, we
investigate a method of reducing the state-space using the gem& simulator [1] and the PapaBench
benchmark software [2].

1.1 Problem Statement

The problem we study is the feasibility of measuring WCET on multi-core systems, without knowing
which inputs leads to the absolute worst case possible. Previous work, called Edify, done on generating
a WCET distribution using gem5 by varying the input of programs [3] limited itself to single-core sys-
tems and used the single-core portions of benchmark suites TACLeBench [4] and EEMBC Autobench
[5]. Edify works by taking the source code of a task, running static analysis to extract the relevant
input variables impacting WCET and compiling all possible programs with these inputs and running
them all. This method is close to the embarrassingly parallel category, which combined with the high
cpu core count virtual machines available today, suggests that using this brute-force method is feasible
for larger state space problems such as measuring WCET on multi-core systems. We therefore focus
on the following research questions:

e RQI1: How to tackle the state-space problem?

One of the bigger technical problems in determining an accurate execution distribution for software
is the state-space. We would like to find an approach that either limits the state-space or increases
the amount of state-space that can be processed per time frame. We approach this by both creating

a framework that allows us to run a lot of simulations in parallel as well as investigating the impact
of reducing state-space by isolating execution time influencing factors into separate runs and using
the output of one run as the input for the next run.

e RQ2: Which emulation mode of gem5 can best be used in large state-space settings?

gemd, explained more in detail in Section 2.2, contains two modes of simulation. System call emulation
mode (SE) and Full System (F'S) emulation mode. Both of these have advantages and disadvantages.
SE mode routes system calls to the host system, trading in accuracy of the simulations for speed of
simulations by not needing to boot an entire kernel first inside the simulation. FS mode does boot
the entire kernel and offers a full Linux environment to do simulations with. In terms of dealing with
the state-space problem, which of the two modes, both or neither, are suitable?

e RQ3: Does gemd currently provide the facilities to do a full WCET analysis for PapaBench?

PapaBench, as noted in Section 2.2, provides a good base to figure out if it is possible to fully emulate
everything that involves running embedded software. Which facilities are required by PapaBench to
fully simulate it and does gem5 offer them?

1.2 Solution Outline

Since not all inputs that have an effect on WCET distribution are known or easily isolated, we provide
a best-effort baseline to compare against. To create simulations, we use the clock-cycle accurate gems
simulator, which has some research behind it regarding accuracy in various settings. Using single-
and multi-core benchmarks, we then evaluate which settings of gem4 create the best match between
parallel computing, accuracy and ease of use. Additionally, we implement a framework to dissect
PapaBench and use it to run simulations on a supercomputer to see how feasible creating an execution
time distribution is for multi-core programs. This framework focuses on two big state-space exploding
factors: determining the branches in code and determining the order of tasks that lead to the highest
execution times. To do this, we modify PapaBench to produce an executable with an API which
determines at run-time what branches of tasks and in which order tasks should be executed. Our
framework then has a two-step approach: first simulate all tasks individually with permuting over all
branches. This results in an output with the values of variables which lead to the highest amount
of instructions measured in gemJ, per separate task. The second step is to use these values in the
next run, where the framework permutes over the order in which tasks are executed. To assess the
accuracy of dividing the state-space into two steps, we then do a third step with our framework, to
use the order of tasks with the highest execution time found in the previous step and permute over
the possible branches again. If there are no simulations with a higher execution time in step 3, than
what was found in step 2, accuracy is deemed high.

Chapter 2

Background

2.1 WCET

As WCET has potentially multiple meanings, talking about WCET can lead to confusion. Wilhelm
et al. [6] have succinctly grouped the various meanings as can be seen in Figure 2.1. When measuring
WCET using dynamic timing analysis, one always has to keep in mind that these methods are not
100% accurate. Therefore, a margin of error has to be added to every measurement or calculation.
That what is measured is then increased with this margin to attain an upper timing bound, of which
is then assumed that it is sufficiently high to be more than the actual possible WCET. Static timing
analysis is assumed to be pessimistic by construction, wherefore this error margin is not applied.

é“ worst-case performance >
= worst-case guarantee
G
g The agteu?I Wé)ET
= Minimal must be found or | Maximal
2| Lower upper bounded Upper
2| timing BCET Jbserved i observed — \WCET timing
3| bound execution execution bound
© time time
" Ll III I““"“ AN S N >
0 measured execution times —— time
possible execution times -
timing predictability
[Wilhelm+08]

WCET: Worst-Case Execution Time
BCET: Best-Case Execution Time

Figure 2.1: Ilustration of what WCET and BCET mean, taken from [6]. The white curve represents
a subset of measured executions, the darker curve represents the times of all executions.

In general, there are two categories of trying to determine the WCET of a system. One category,
dynamic timing analysis, is the measuring of execution times through simulating a program or exe-
cuting it on hardware. To ease the computation requirements of measurement, often only a subset of
the actual possible executions are taken into account. Newer measurement-based approaches measure
different parts of a task and combine them to give better estimates, though these methods rarely
guarantee upper bounds on execution times. As can be seen in Figure 2.1 in the white curve, this
approach leads to overestimated BCET times and underestimated WCET times. The other category
is an approach not of measuring but of combining the source code of a task or system with some
(abstract) model of the system and aims to obtain upper bounds from this combination. An example

of a method in this category is Model Checking. This category is identified as static timing analysis.

2.2 Applications used by our framework

PapaBench is a benchmark that aims to provide a close to real usage benchmark scenario. It does
so by simulating a drone program with two CPUs and divides the work into 13 separate tasks.
Example tasks for the benchmark include for example transmit and receive tasks to a base station,
communication between the two CPUs using SPI and controlling altitude. It also includes a definition
of the hardware as well as interrupts and how often they should trigger. TACLeBench is a suite of
benchmarks, which also includes PapaBench, focused on usage in timing-analysis. TACLeBench is
used in this paper for evaluation of emulation mode in gems.

Rather than using expensive hardware, another option is to use clock-cycle accurate simulators.
Gem5 is one such product, with research done on its accuracy [7, 8]. Due to being a simple exe-
cutable, gem5 is capable of being distributed over many cores. Moreover, gemd is very customisable,
providing options for simulating different CPU architectures, memory configurations, full L1/L2 cache
simulation, power measurements and more.

Given that many programs that require WCET analysis are in the embedded software class and
also run on ARM technology, as well as being well-documented and compared to real hardware, the
in-order HPI CPU model [9] is most applicable to researching WCET.

Another thing to note is the difference between System Call emulation mode (SE) and Full System
emulation mode (FS). In SE mode, all system calls are passed on to the host system. For the HPI
CPU model, one of the consequences of SE mode is that I/O does not go over the HPI memory bus
and instead gets a simulated delay. Furthermore, as the simulation in SE mode does not include
simulating Linux kernel, the interference of CPU scheduler is not taken into account. F'S mode on the
other hand, includes a root file system with a full Linux kernel and simulations in this mode include
interrupts, full I/O over memory bus simulation as well as CPU scheduler and background processes
included in all measurements.

Of these two modes, SE mode is the easiest to distribute over a large number of cores, as starting a
new simulation is a simple matter of starting a new instance of gemd with the proper parameters. FS
mode does not necessarily mean that this is not possible, except that feeding the running instances
with new programs requires having gem& connect via TCP/IP or gems’s readfile/writefile instructions
to the outside world. Both of these solutions would influence the simulation itself.

Another limitation of gem$ is that it only supports several operating systems that it can emulate
[10]. For the ARM platform, these are limited to Linux, BSD and Android.

An example of the statistics that gemd dumps is available in listing 2.1.

= o
= O © 00O Uk WwWwN

=
W N

14
15

16
17

18

=
H O © 00 O Ut kW

I el e S
O © 00O U WN

Listing 2.1: Example of some of the statistics that gemd dumps

final_tick 12680750000 # Number of ticks from beginning of simulation (restored
from checkpoints and never reset)

host_inst_rate 250793 # Simulator instruction rate (inst/s)

host_mem_usage 407392 # Number of bytes of host memory used

host_op_rate 269462 # Simulator op (including micro ops) rate (op/s)

host_seconds 4.08 # Real time elapsed on the host

host_tick_rate 3069915797 # Simulator tick rate (ticks/s)

sim_freq 1000000000000 # Frequency of simulated ticks

sim_insts 1023936 # Number of instructions simulated

sim_ops 1100184 # Number of ops (including micro ops) simulated

sim_seconds 0.012534 # Number of seconds simulated

sim_ticks 12534240000 # Number of ticks simulated

system.cpu_cluster.cpus.branchPred.lookups 219524 # Number of BP lookups

system.cpu_cluster.cpus.branchPredindirectMispredicted 4 # Number of mispredicted

indirect branches.

system.cpu_cluster.cpus.committedInsts 1015910 # Number of instructions committed

system.cpu_cluster.cpus.committedOps 1090253 # Number of ops (including micro ops)
committed

system.cpu_cluster.cpus.cpi 1.233794 # CPI: cycles per instruction

system.cpu_cluster.cpus.dcache.ReadReq_accesses::total 280366 # number of ReadReq
accesses (hits+misses)

system.mem_ctrls.busUtil 0.04 # Data bus utilization in percentage

Gemd includes detailed statistics on the simulations it runs. Instructions simulated, time simu-
lated, time taken by host, cache misses, page faults, TLB accesses and more are all logged. Gemd
automatically logs these statistics upon program exit. For SE mode this means a relatively accurate
collection of data that the program took to run, given the constraints of its mode. In FS mode
however, there is no definitive exit, as it emulates a full Linux system. Hence, gem& offers assembly
instructions on each CPU model, that tell gem5 to reset counting and dumping of statistics. These
instructions are exposed as C functions in a header, but that automatically means that the software
under test has to be modified explicitly to tell gemd which moments statistics should be collected. As
can be seen in listing 2.2, the modification for dump statistics is a minor one. For FS mode however,
executing a separate binary with these instructions exposed as command line arguments is available.
A downside of this is that this executable has to be loaded from disk into memory, adding overhead
to the statistics and filling the CPU cache with its execution. This overhead has been measured on
our setup, as described in Chapter 3, to be 548.6 us(n=10, 0=32.2).

Listing 2.2: Example of how to dump stats with gemd by modifying source code

#include
// lift_init, lift_main and lift_return functions left out for brevity
/* mb5_dump_stats (0, 0) results in the following assembly on AArch64:
* 400774 : d2800001 mov zl, #0z0 // #0
* 400778: 42800000 mow z0, #0z0 // #0
* 40077c: 94000042 bl 400884 <m5_dump_stats>
*/
int main(void)
{
lift_init () ;
m5_dump_stats (0, 0);
lift_main();
m5_dump_stats (0, 0);
return (lift_return());
}

2.3 Edify

Edify [3] laid some of the groundwork for this paper. Edify works by first using a static analyser to
classify variables along two orthogonal lines: directly or indirectly influencing execution times and
whether the influence is on loops, conditionals or variable instruction times. This output can then
be used to reduce the set of variables to iterate over, reducing the state-space. The Edify framework
then runs a number of simulations until a fixed-point iteration is achieved. This then results in an
execution time distribution. However, Fdify focuses only on single-core executions and only on the
values of variables. There are more factors influencing execution time, such as cache state, interrupts
and in the case of multi-core, the time when a task on core 1 executes relative to a task on core 2.

As the static analyser seems unwieldy to use and incomplete, an alternative would be preferred.
In companies applying WCET analysis, the source code is accessible and someone is available who
helped create the software, which means that the analyser step can be replaced by manually selecting
variables that influence execution times. As such, this static analyser is not present in our framework
and we will manually determine what the output of this tool would have given us.

Chapter 3

Accuracy of SE vs FS mode

As mentioned, gem5 offers two simulation modes. Even though others [7, 8] have done measurements
on the accuracy of gems, both cited papers use the FS mode to do the measurements and have not
compared accuracy between the two modes. The HPI model [9] does measure SE and FS performance
individually, but does not make an attempt at comparing the two. Moreover, accuracy of the sim-
ulations also depends on single-core vs multi-core. In addition, it is easier to distribute gems over
multiple processors. As such, a closer view on whether SE mode is accurate enough for our state-space
analysis is required.

TACLeBench provides benchmarks for both modes and has been selected for comparing the two
modes using the HPI CPU model, the default DDR3 1600 8x8 1 memory channel with 256 MB, L1
cache enabled and for multi core L2 enabled and the CPU frequency set to 100 MHz. Since gems
only shows statistics with an accuracy up to 1 microsecond, running gemd at the default 2 GHz would
result in certain benchmarks completing in 0 ps. The software has been modified slightly, for each
benchmark we inserted a function call to tell gem5 to dump statistics after the initialisation and after
the main task. With this we can measure the duration of the task itself.

For the single-core benchmarks, Table 3.1 shows a single full run of TACLeBench on SE and FS
compared between each other. Aside from some anomalies, simulated time is very close between the
two modes. Two benchmarks from the sequential directory have been excluded (rijndael_enc and
rigndael_dec) since they created a ”stack smashing detected” error, a protection added in recent gec
releases. The fft, Ims and h264_dec benchmarks produce incorrect results on our setup. On x86-64
the fft and h26/_dec benchmarks do produce correct results, but even on x86-32 the Ims benchmark
produces incorrect results. Moreover, the recent gcc release used in our setup catches an undefined
behaviour bug in the Ims benchmark. The bug in Ims has been reported by us and our fix has been
merged after we finished our benchmarks, but the other bugs are reported and we have not heard
anything back on those. Regardless, this suggests that TACLeBench might not be well tested on the
AArch64 and x86-32 architectures.

The big outlier is the fac benchmark. In the main function of that benchmark, printf is called.
Given that we ran a Linux distribution using glibc, printf both allocates memory and obtains a lock,
both of which are system calls. Removing the printf statement makes the simulated time in F'S mode
equal to SE mode, whereas doubling the printf call only adds half of the simulated time, suggesting
that some caching effect is going on. This is most likely the reason why a benchmark like huff_enc
is not affected as badly, given it does 648 printf calls in the main function. In a scenario which uses
system calls, it might be better to use FS mode, but system calls are generally expensive and thus
they tend to be avoided in embedded software or in the case of running without an OS they are not
present at all. This is also the case for PapaBench, which does not impede the accuracy for SE mode
significantly in our context.

The benchmarks ndes, petrinet and statemate show the biggest relative differences. Petrinet, and
other benchmarks that finish within roughly 20 us, tend to skew the overall difference. A 4 us
difference for petrinet means 57.1%, whereas a 4 us extra difference for ndes would mean less than a
percentage-point difference. Therefore, it is much more interesting to look at the ndes and statemate
benchmarks. If we compare the statistics gems gives us for SE and FS mode for both ndes and

statemate we find that the amount of instructions committed in F'S mode is significantly more than
SE mode. Moreover, the cycles per instruction count is higher as well, though statemate shows a lesser
increase for this statistic than ndes. This suggests two things: the former difference suggests that in
FS mode, more than just the benchmark is executed. This is a given, since FS mode includes things
like CPU schedulers and background processes which may execute during the benchmark. The latter
suggests that things like the branch predictor and the L1 cache have a lower hit-rate, most likely also
because of background processes filling the stored branch predictions and caches with its own data
simply by being executed. Although we have no definitive evidence that these factors are the cause
of these differences, they are likely enough to leave determining the exact impact for future work.

Interesting to note about these single-core benchmarks is that the longer the benchmarks run,
generally speaking, the less difference there is between the two modes. Figure 3.1 shows this more
clearly. This suggests that part of the difference between SE and F'S can be explained by some overhead
in FS mode: the very fast benchmarks sometimes complete in (almost) the same time, sometimes in a
lot slower time, but as the length of the benchmark increases, the chance of running into this overhead
increases to 100% but the impact decreases. This lowers the spread of the benchmarks in the bottom-
right quadrant. We think this is most likely because of extra processes running in the background in
F'S mode, such as loggers and system daemons.

We also tried to run the multi-core benchmarks, namely the DEBIFE, PapaBench and rosace bench-
marks included in TACLeBench. DEBIE has been modified by the authors of TACLeBench to be
single core, PapaBench is a two-core benchmark and rosace a five-core benchmark. However, as gems
in FS mode with 3 or more CPU cores crashed very early in the boot process, and we already had
single core results, we could only meaningfully run PapaBench. Making measurements in F'S mode
with multiple cores involves more than measurements for single core: each executable has to be started
separately at roughly the same time, but starting executables include simulating I/O, which makes a
second started executable always start later. It is also very hard to determine which statistics belong
to which m&_dump_stats call, given that they can be interleaved. If the executables are especially fast,
it is likely that the first executable finishes before the second executable. Fortunately, gemd supports
setting CPU frequency, reducing the speed with which PapaBench completes. We inserted a call to
gemd to dump stats before and after the main part of the benchmark, for both executables, excluding
initialisations. This results in four calls to dump statistics, of which the difference between the first
and fourth call are then considered to be the execution time for FS mode. We ran PapaBench with
the CPU frequency set to 100 MHz and 1000 MHz. The results can be seen in Table 3.2.

Given that PapaBench aims to emulate an embedded system with a processor core dedicated to one
executable, the setup that gemd gives us seems to be outside of the intended use. There is likely no
CPU scheduler in such a setup, disk I/O is only present during system boot for loading the executables
into RAM, the executables also start more deterministically in such a system. On top of that, running
Linux means a whole combination of things: no ring 0 access, using entire software stacks such as the
GNU C library, aforementioned extra processes running in the background such as loggers and system
daemons and extra security measures such as stack smashing protection or SPECTRE mitigations.
Although the extra security measures can be disabled, it is not the default. For single-core, we can
reasonably show that the choice between SE and F'S does not impact the execution time of the tasks a
lot, outside of some certain known situations. For multi-core however, there a lot of setup differences
that make comparing SE and FS mode difficult. The per-run variation that FS mode introduces
due to the aforementioned problems for both single-core and multi-core simulations, makes isolating
factors that impact execution times a lot harder. Even with this difficulty, we think it is likely that
the difference for PapaBench between SE and FS mode can be explained by other Linux processes
running in the background as well as disk I/O having an impact on when the second PapaBench
executable starts. Though validation hereof through synchronisation of executable start times is left
to future work. These differences combined with the points that it is quite unlike embedded software
systems to run Linux instead of a real-time operating system or no operating system, and that it is
easier to distribute SE mode over multiple processors, we have opted to go with SE mode for our
framework.

10

Table 3.1: SE vs FS single-core results.

Benchmark \ Simulated time SE (us) \ Simulated time FS (us) \ FS difference with SE ‘
fac 27 945 3,500%
ndes 666 1,194 79.2%

petrinet 7 11 57.1%
statemate 515 731 41.4%
prime 3 4 33.3%
duff 3 4 33.3%
adpcm_dec 16 21 31.2%
h264_dec 177 224 26.6%
audiobeam 2,480 3,063 23.5%
huff_dec 1,310 1,598 22.0%
huff_enc 4,019 4,901 21.9%
anagram 12,949 15,570 20.2%

adpcm_enc 20 24 20.0%
fmref 3,219 3,862 20.0%
fft 3.003 3677 18.9%

insertsort 6 7 16.7%
powerwindow 12,522 14,598 16.6%
minver 19 22 15.8%

cjpeg_wrbmp 505 584 15.6%

sha 7,481 8,619 15.2%
g723_enc 3,994 4,581 14.7%
gsm_dec 10,844 12,446 14.7%
gsm_enc 21,374 24,011 12.3%

cubic 8,837 9,906 12.1%

lift 4,768 5,331 11.8%

epic 22,205 24,746 11.4%

isqrt 4,544 5,050 11.1%

cjpeg-transupp 16,975 18,865 11.1%
ludemp 19 21 10.5%
filterbank 24,521 26,770 9.2%
jfdetint 11 12 9.1%
quicksort 15,492 16,782 8.3%

cover 12 13 8.3%

test3 849,804 920,944 8.3%
fir2dim 25 27 8.0%

pm 71,651 76.260 6.4%

mdb 85,456 90,322 5.7%

susan 240,178 252,808 5.3%
dijkstra 217,516 998 557 51%
recursion 21 22 4.8%
ammunition 742,704 778,179 4.8%
mpeg2 1,067,655 1,118,114 7%
bitcount 66 69 4.5%
countnegative 29 30 3.4%
bitonic 98 100 2.0%

cosf 170 172 1.2%

bsort 530 531 0.2%

binarysearch 1 1 0%

complex_updates 4 4 0%
deg2rad 55 55 0%

iir 2 2 0%

Tms 1,107 1,107 0%
matrix1 65 65 0%
rad2deg 55 55 0%

st 415 415 0%
| total (55 benchmarks) | 3,460,240 3,676,032 6.2%

11

slowdown of FS mode plotted against runtime

80 A

70 A

60 A

50 A

40 1

30 A

% slower than SE mode

20 A

10 A

T
101 102

T T
103 104

runtime FS mode (ps)

Figure 3.1: Difference between FS and SE mode plotted against runtime, excluding fac.

Table 3.2: SE vs FS PapaBench multi-core results at 100 MHz and 1000 MHz CPU Frequency,
standard PapaBench build.

| CPU Frequency (MHz) | Run number | Time SE (us) | Time FS (us) | Difference |

100 1 580 2742 472.8%
100 2 580 4531 781.2%
100 3 580 3799 655.0%
100 4 580 3712 640.0%
100 5 580 4927 849.5%
1000 1 69 183 265.2%
1000 2 69 403 584.1%
1000 3 69 1016 1472.5%
1000 4 69 566 820.3%
1000 5 69 571 827.5%

12

Chapter 4

State-space framework analysis

PapaBench consists of 8 tasks for the autopilot program and 5 tasks for the flybywire program. Table
4.1 lists the number of branches, and thus required simulation runs, required for brute forcing WCET
for each individual task. For the default PapaBench test benchmark, the tasks are always executed in
the same order, but the original paper for PapaBench [2] shows that the intention is to run each task a
set amount of times per second and includes interrupts. Gemd does not support setting up interrupts,
so we are unable to include those in our analysis. We will instead focus on shuffling of task order
and variables influencing execution times. Because of time pressure, the constraint of running certain
tasks after other tasks is not met, leading to configurations that would normally result in wrong
state. This leads to tasks being run at the same time which would not happen in reality, possibly
leading to a more optimistic or a more pessimistic execution time. Moreover, the task initialisation
only initialises the variables that directly influence execution times of the task itself. However, some
tasks, such as the altitude_control_task task, influence the content of variables used in other tasks,
such as climb_control_task. In this case, the variable desired_climb is set by altitude_control_task and
used as an input for climb_control_task with several if statements influenced by this value. With the
way that SE mode works in gemJ, each executable operates with its own memory range, preventing
modifying contents of memory of tasks on one core by tasks of the other core. This means that in the
current setup, all tasks scheduled to run on one core, can have an impact on variables of other tasks
running on that core but not the other core. Preventing this effect on variables used by other tasks
is possible by setting them to a value in the task initialisation. This effectively treats the variables
influencing other tasks as variables influencing execution times, increasing the state-space through
the amount of branches taken. However, the impact of this decision is unknown to us: it could be an
important effect that task order can have on execution times, but it can also make it harder to isolate
cause and effect. We have opted to allow these cross-task influences to occur to reduce the amount
of simulations required and studying the impact is left for future work.

4.1 State-space framework

To reduce the state-space of multi-core simulations, we want to see if cutting separate execution time
influencing factors into separate steps is an option. For testing this, we have selected the variables
influencing execution times, like Fdify has shown, and the order in which tasks are executed. More
factors, such as thread delay or cache state, would give a less optimistic result for WCET, but we are
interested only in seeing if handling each factor separately, using the output of one step as input to
the other step, is an option that does not compromise on accuracy too much.

We have implemented a framework that allows us to run simulations on the DAS-/ [11, 12] super-
computer using MPI and gem5. DAS-4 is a slightly older supercomputer being in operation since
2010, with 2 clusters already being decommissioned to make room for DAS-5. Our research used a
cluster that supported executing on 32 nodes simultaneously, resulting in an availability of 256 CPUs.
An overview of the framework is as follows (see also figures 4.1 and 4.2): the software to be simulated
is modified to expose itself to our framework, see Section 4.2 for more detailed information, and a

13

configuration file given the tasks and variable iteration range is made. The software to be simulated
then offers an interface to our framework to execute threads in arbitrary order as well as with which
values the tasks are to be initialised.

The framework is run with MPI, each node starts up a python script like what is shown in listing
4.4. For determining values, a slightly different python script is defined, which does not permute
over task order but creates a Cartesian product of all possible values defined in the configuration
instead. Lines 21 through 23 of listing 4.4 are the only interaction with MPI, as there is no need for
communication between MPI nodes. Instead, line 4 shows that the slice of permutation is computed
for each node, depending on its own node number and the total number of nodes that are running
the framework: rank and size respectively. Calculating all permutations and distributing them over
MPI would require orders of magnitude more RAM, which would quickly become more than what the
master node could allocate.

To reduce the number of simulations, our framework uses a preliminary step: calculate the values
that lead to the WCET when running tasks separately. Our assumption is that the simulation with
the highest number of instructions simulated is the slowest path through the task. Given that another
assumption is that programs used with our framework can only be of the type where the user has
complete control over the source code and has knowledge of the software, it is likely that users can
select interesting variables. Using the executable made when modifying the software to be simulated,
our framework then simulates all possible paths given the selected values. Therefore, only permuting
over task order remains, significantly reducing the number of simulations needed. Our setup permutes
over task order indiscriminately, that is, task dependencies are ignored, as explained in the intro of
this chapter.

For each permutation of task order, the tasks are distributed over each core of the two cores. This
means that, for the 13 tasks of PapaBench, 14 simulations are run. For example, if a permutation
results in the following task order: {1,2,3,4,5,13,12,11,10,9,8,7,6} the following simulations are
run, with each embedded set being the simulations for one core:

{{9},{1,2,3,4,5,13,12,11,10,9,8,7,6} }

{{1},{2,3,4,5,13,12,11,10,9,8,7,6} }
{{1,2},{3,4,5,13,12,11,10,9,8, 7,6} }

and so on up to
{{1,2,3,4,5,13,12,11,10,9,8,7,6},{0}}

Once either the simulations are completed or the supercomputer job time limit has been reached,
all statistics are collected and put into an aggregation tool to create an execution time distribution.
The number of simulations necessary to simulate each branch combination for PapaBench would have
lead to Hlli pi; = 1.208 x 101* (Table 4.1, p = paths of task i) combinations, but only wanting the
highest execution time per task needs Ei‘ll pt; = 1,396 simulations. Permuting over task order and
spreading them over both cores leads to (13%313), X (134 1) = (13 + 1)! = 8.718 x 101V combinations.

The statistics dumped by gemd are compressed using Zstandard [13], which is one of the best
compression techniques when it comes to high compression and decompression throughput. Zstandard
is the leading-edge in free compression techniques that outperforms other techniques for its intended
compression ratio range. Fach simulation generates about 4,5 MB worth of statistics. Using Zstandard
with a trained dictionary, this is reduced to 40-50 KB. Since our allotted disk quota is 40 GB, this limits
us to roughly 700,000 simulations before we run out of space. A variation of other free compression
techniques, namely 7zip, bz2, gz2 and zip, have been tried, of which only 7zip was able to improve on
compression ratio while having significantly lower compression throughput.

To assess the accuracy of dividing the state-space into two steps, we define the following runs:

e one run to determine the values of the variables influencing execution times, isolated per task.
This run does not permute over task order.

e One run using the values found in the previous run as input, only permuting over task order.

14

e One validation run with the task order with the highest execution time found in the previous
run, fixing the task set order and distribution over cores, and iterate over the Cartesian product
of all possible values of variables influencing execution time. In contrary to the first run, this is
not isolated per task.

In the last run, the aim is to find any simulations which lead to a higher execution time than what
was found in the second run. If there are none, we can say with a high likelihood that reducing
state-space in this manner does not lead to lower accuracy.

Finally, we compare a random simulation from the second run with a hand-made binary, to deter-
mine the overhead of the API we introduce.

Table 4.1: Tasks and identified unique paths of PapaBench.

’ Task \ Paths ‘
T1: check_failsafe_task 2
T2: check_megal28_values_task 16
T3: send_data_to_autopilot_task 16
T4: servo_transmit 1
T5: test_ppm-_task 16
T6: radio_control_task 320
T7: stabilisation_task 2
T8: link_fbw_send 3
T9: receive_gps_data_task 192
T10: navigation_task 25
T11: altitude_control_task 2
T12: climb_control_task 800
T13: reporting_task 1

4.2 Benchmark software setup

The framework requires manual setup on the software to be simulated beforehand. This includes
dividing the software into tasks, manually determining code paths per task, altering the source code
to introduce an initialisation function per task which can be used by FEdify to trigger all code paths
of that particular task, introducing a function that runs a task as well as modifying the output to
be a library rather than an executable. For PapaBench, the tasks have already been clearly divided
and the benchmark contains several variables that influence execution time. As explained in Section
2.3, we looked at the source code ourselves and identified several more code variables that directly
influence execution times, the result of which can be seen in Table 4.1.

These modifications are applied on the source code under test, which has to expose a linked list
with all the tasks, and per task: its name, initialisation function and the run function. Listing 4.1
shows an example of this and listing 4.2 shows an example of how a task is initialised.

A configuration file is then used to determine what values should be injected into the tasks, matching
the tasks by order of appearance and matching the values per task also by order of appearance. Listing
4.3 demonstrates how this could look.

Once setup is complete, an executable is created combined with the aforementioned library. This ex-
ecutable offers a command line arguments interface for our framework to decide which tasks to run, in
which order and with which initialisation values. An example of how the executable is called from the
command line is available in listing 4.5. This example executes task check_megal28_values_task first
with the values 0, 1, 0 and 1 given to the initialise function, then the task send_data_to_autopilot_task
with the values 1, 1, 1 and 1 and lastly the task link_fow_send with the value 2. The order of the values
given on the command line correspond to the order of the values defined in the initialisation of the
task, like in listing 4.2. The names of values in the configuration file serve the purpose of improving
readability.

15

= =
H O © 00 O Utk W

e i
0 O Utk WN

=
©

[
(=)

Listing 4.1: Example of exposing two tasks and the program initialisation for PapaBench

void program_init(void);
void servo_transmit(void);

void test_ppm_task(void);
int init_test_ppm_task(int arg_count, int *task_args);

typedef void (*functionPtr) ();
typedef int (*initFunctionPtr) (int count, int *task_args);

typedef struct task {
char *name;
functionPtr function;
initFunctionPtr init;
struct task* next_task;

} task;
task _servo_transmit = { .name = "servo_transmit", .function = &servo_transmit, .init
= 0, .next_task = 0 };
task _test_ppm_task = { .name = "test_ppm_task", .function = &test_ppm_task, .init = &
init_test_ppm_task, .next_task = &_servo_transmit I};
task tasks_to_execute = { .name = "program_init", .function = &program_init, .init =
0, .next_task = &_test_ppm_task };
Listing 4.2: Example of initialisation of global variables for the test_ppm_task task
int init_test_ppm_task(int arg_count, int #*task_args) {
if (arg_count != 4) {
printf ("Horrible disaster for init_test_ppm_task, expected 4 arguments got %i\
n'", arg_count);
return -1;
}
mode = task_args[0];
ppm_valid = task_args[1] == 1 ? TRUE : FALSE;
spi_was_interrupted = task_args[2] == 1 ? TRUE : FALSE;
last_radio_contains_avg_channels = task_args[3] == 1 ? TRUE : FALSE;

return O;

16

© 00 O Uk W N

AR W W W W W W W W W WNNDNDNDNDNDDNDNDNDN e e e e
H O © 00O Uk WNFHOOOWNNOUR WNRFROOOWNNO U B WN - O

Listing 4.3: Part of the configuration file used for step 1 in our framework: finding the values which

lead to the highest execution time

{
"papabench": {
"tasks": [{
"name": "send_data_to_autopilot_task",
"values": [{
"name": "mode",
"values": [0, 1]
. {
"name": "SPI_PIN",
"values": [0, 1]
.4
"name": "spi_was_interrupted",
"values": [0, 1]
. {
"name": "last_radio_contains_avg_channels",
"values": [0, 1]
}
}.{
"name": "check_megal28_values_task",
"values": [{
"name": "mode",
"values": [0, 1]
3. {
"name": "SPI_PIN",
"values": [0, 1]
. {
"name": "spi_was_interrupted",
"values": [0, 1]
}.{
"name": "last_radio_contains_avg_channels",
"values": [0, 1]
}
}.{
"name": "link_fbw_send",
"values": [{
"name": "spi_cur_slave",
"values": [0, 1, 2]
}
}]
}
}

17

=W N =

14
15

16
17
18
19
20
21
22
23
24

25

26

27
28

1

Figure 4.1: Overview of multi-core WCET framework:
executable with command line API (top left) serve as input; our framework is then distributed over
all nodes through MPI, resulting in a collection of statistics from which an execution time distribution
can be extracted.

Listing 4.4: MPI distribution of permuting over task order

Imports, some functions, classes and arguments skipped for brevity
class GenerateThreadsSimulationsTask:
def produce_task_permutations(self, tasks: List[Task]) -> Iterator[List[Task]]:
for workload in itertools.islice(itertools.permutations(tasks, len(tasks)),
int (self.rank * self.skip), int((self.rank + 1) * self.skip)):
yield workload

def execute(self):
run_id = 1

for task_permutation in self.produce_task_permutations(self.benchmark.tasks):

for x in range(len(self.benchmark.tasks) + 1):

core_one: List[Task] = task_permutation[:x]
core_two: List[Task] = task_permutation([x:]
run_args: List[str] = [self.get_run_args(core_one), self.get_run_args(

core_two)] #create command line parameters per core

RunSimulationTask (run_args, self.rank, run_id).execute() #this runs
gem5, compresses stats, stores results on the filesystem and so

run_id += 1

if __name__ == "_ _main__":

benchmark_config = BenchmarkConfig(json.load(open(’benchmarks.json’)))

comm = MPI.COMM_WORLD

size = comm.Get_size ()

rank = comm.Get_rank ()

benchmark, = [bench for bench in benchmark_config.benchmarks if bench.name == "
papabench"]

total_permutations = math.factorial(len(benchmark.tasks)) #not the same as
calculated state-space! Distributing over cores 1is listed above

skip = int(total_permutations/size)

GenerateThreadsSimulationsTask (benchmark, rank, skip).execute ()

Listing 4.5: Example usage of PapaBench executable with command line API

./papabench check_megal28_values_task;send_data_to_autopilot_task;link_fbw_send
0;1;0;1 1;1;1;1 2

Binary library
with specific 3 Simulation
framework GemS5 run 1 Statistics
additions
v
Multi-core

. . Simulation 4| Execution Time
Simulation : Gem5 run 2 Statistics ”| Distribution
Framework

i 5 i
Tasks in binary | | | o) ! ;
; o . Simulation |
library & task ~» GemSrunn oo Statistics '
input range : !

18

on

the benchmark configuration (bottom left) and

1. Modify software
to simulate

v

2. Compile
executable with
interface

3. Run simulations

”| per isolated task

v

5. Collect and

analyse statistics |

4. Run task-order
simulations

19

Figure 4.2: Stages of multi-core WCET framework: how we arrive at an execution time distribution.

Chapter 5

Measurements using framework for
PapaBench

Table 5.1: Results using worst-case values after running X minutes of simulations, full task set of
PapaBench with 13 tasks.

| Time (minutes) | Min (us) | Max (us) | Total Simulations | Incorrect Simulations

15 177 623 39,130 93

30 177 623 82,780 211
60 158 623 169,922 449
90 158 623 256,721 688
120 150 624 343,601 913
240 150 624 690,777 1973

Table 5.2: Results using worst-case values, reduced task set of PapaBench with 7 tasks.

| Main or Validation run | Min (us) [Max (us) | Total Simulations | Incorrect Simulations |

Main 41 115 40,320 o7
Validation 48 148 98,304 0

Figure 5.1 shows the execution distributions of all permutations of the 13 tasks in PapaBench,
using the values for variables leading to the highest instruction count per task. Each graph represents
the distribution found after the given minutes of running simulations. The final, 240 minute graph
shows the distribution for the entirety of our dataset. Table 5.1 shows the minimum and maximum
simulation time found by summing the execution times of all tasks, as well as the total simulations and
the number of incorrect findings, for their respective time frame. A fixed-point iteration is found at
the 120-minute mark, after which no new execution times are found when compared to the 240-minute
run. Our framework ran an average of 2878 simulations per minute on 256 cores, slightly more than
11 simulations per core per minute. The incorrect simulations are due to two categories of errors.
Category one is Zstandard checksum errors and incorrect amount of dumped stats. This category is
likely due to storing the output on the distributed filesystem led to bytes being dropped. We tried
to reproduce the incorrect amount of dumped stats with exactly the same setup as during the full
run on a different machine, but we could not manage to do so. Category two is missing simulations
due to being aborted by the job system. The files were already created but no data written to them.
These are all also the last run a particular node has made. Category 1 happens 1926 times out of the
1973 incorrect simulations noted, only 1 is due to checksum errors and the remaining 46 are due to
being aborted.

To determine whether reducing state-space by two steps gives optimistic or pessimistic execution
times, we take the task order of one of the runs that has the highest execution time from our dataset

20

no. of occurances

no. of occurances

15 minutes

2000 4

1750+

1500+

1250+

1000+

750 A

500

2504

T T T T
200 300 400 500
runtime (ps)

90 minutes

T
600

12000 4

10000

8000

6000

4000

2000

T T T T
200 300 400 500
runtime (ps)

T
600

no. of occurances

no. of occurances

30 minutes

4000 A

3000 1

2000 4

1000 4

oA

T T T T T
200 300 400 500 600
runtime (ps)
120 minutes

17500 4
15000 4
12500 4
10000 4
7500 1

5000 4

2500 H

0_

T T T T T
200 300 400 500 600
runtime (us)

no. of occurances

no. of occurances

60 minutes
8000
6000 1
4000 -
2000 1
0-
T T T T T
200 300 400 500 600
runtime (ps)
240 minutes
35000 4
30000 -
25000+
200004
15000 1
10000 1
5000 4
0_
T T T T T
200 300 400 500 600
runtime (ps)

Figure 5.1: Execution distribution of PapaBench at various times. Each subgraph shows how often
a specific runtime was encountered, within X minutes of starting the state-space analysis framework.
The area under the graphs are the same as the total number of simulations in Table 5.1 minus the

incorrect simulations.

21

Execution distribution reduced run

8000

6000 1

4000 A

no. of occurances

2000 A

0———‘—1\—-—""M}

\

T
40 60 80 100

runtime (ps)

(a) Main run

T T
120 140

no. of occurances

Execution distribution validation run

3500

3000

2500 A

2000 4

1500 4

1000 4

500

40

T T T
60 80 100 120 140
runtime (ps)

(b) Validation run

Figure 5.2: Execution distribution of smaller run of PapaBench. Each subgraph shows how often a
specific run-time was encountered. The area under the graphs are the same as the total number of
simulations in Table 5.2 minus the incorrect simulations. The main run here is permuting over task
order, the validation run simulates all the possible values of variables directly influencing execution
time, with the same task order as the simulation with the highest run-time found in the main run.

22

of 240-minutes, and simulate all combinations of values of variables identified in Table 4.1, with this
task order. We call this our validation run. A validation run on PapaBench with 13 tasks requires
1.208 x 10'* simulations, which would take almost 80,000 years on our setup. We have therefore also
included a smaller run in our experiments, with only 7 of the 13 tasks of PapaBench: T1, T2, T3, T5,
T7, T8 and T11. This leads to needing 2 x 16 x 16 x 16 x 2 x 3 x 2 = 98, 304 simulations for validation
and (7+1)! = 40, 320 permutations of task order. The results of the permutation of tasks run as well
as the validation run can be seen in Table 5.2. figures 5.2a and 5.2b show the execution distributions
of the runs, respectively. The validation run shows that there are quite some configurations where
the execution time is higher than the highest configuration from the main run. Moreover, it seems
that modifying variables that influence execution times leads to greater diversity in the distribution,
suggesting that it is a bigger factor than task order.

Comparing a random simulation from the full PapaBench task set run with a binary made with a
static task order execution, without the command line API, we find two things: the measured overhead
in terms of instructions from our framework is only a pointer indirection, that is 2-4 instructions per
task depending on how the compiler arranges the instructions. Second, for the run we compared,
the hand-made binary takes 11 us more to complete but 24 fewer instructions. gemd outputs that
the cycles per instruction for the hand-made binary is significantly higher than the run with our
framework as well as a lower success rate for the branch predictor, however the total number of
branch predictor lookups done is lower in the hand-made binary. Cache hit/miss statistics show no
significant differences between the runs.

00 N O Utk WN -

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

Listing 5.1: Static task order binary, used to compare with our PapaBench executable with command
line API, to determine overhead of our framework

void test_ppm_task(void);
int init_test_ppm_task(int arg_count, int *task_args);

// SNIP
// more extern definitions of functions here
// SNIP

#define EXECUTE_TASK_WITH_INIT(task, valcount, valone, valtwo, valthree, valfour,
valfive, valsix) \
values [0] = valone; values[1] = valtwo; values[2] = valthree; values[3] = valfour;
values [4] = valfive; values[5] = valsix; \
init_ ## task(valcount, values); \
m5_dump_stats (0, 0); task(); mb_dump_stats (0, 0); \

#define EXECUTE_TASK (task) \
m5_dump_stats (0, 0); task(); mb_dump_stats (0, 0);

int main(int argc, char *argv[]) {
int values [6];

program_init () ;

EXECUTE_TASK_WITH_INIT(test_ppm_task, 4, 1, 0, 1, 1, 0, 0)
EXECUTE_TASK (servo_transmit)

EXECUTE_TASK_WITH_INIT (send_data_to_autopilot_task, 4,
EXECUTE_TASK_WITH_INIT (check_megal28_values_task, 4, O,
EXECUTE_TASK_WITH_INIT(check_failsafe_task, 1, 0, 0, O
EXECUTE_TASK_WITH_INIT(stabilisation_task, 1, 1, 0, 0, O, 0, 0)
EXECUTE_TASK (reporting_task)
EXECUTE_TASK_WITH_INIT(receive_gps_data_task, 6, 0, 3, 0, 0, 0, 6)
EXECUTE_TASK_WITH_INIT(radio_control_task, 5, 1, 4, 1, 1, 0, 0)
EXECUTE_TASK_WITH_INIT (navigation_task, 2, 0, 3, 0, 0, 0, 0)
EXECUTE_TASK_WITH_INIT(link_fbw_send, 1, 1, 0, O, 0, 0, 0)
EXECUTE_TASK_WITH_INIT(climb_control_task, 5, 0, 1, 7, 6, 1, 0)
EXECUTE_TASK_WITH_INIT(altitude_control_task, 1, 1, 0, O, 0, O, 0O)

return O;

23

Chapter 6

Discussion

6.1 Task scheduling

Two big things our framework did not implement are task dependencies and scheduling the start of
tasks relative to another task. To properly run these task dependencies, either a task scheduler should
be implemented or the next task should wait upon the dependent upon task. Moreover, although the
overhead of the measured part of the overhead of our API is negligible, the time it takes between
tasks is on the same order of magnitude as the PapaBench tasks itself. This means that there might
be some overlap between running a PapaBench task on one core and our task-decision algorithm on
the other core. A synchronisation mechanism for starting threads on cores at the same time would
be preferable.

Furthermore, as stated in the beginning of Chapter 4, there exists cross-task variable content
influence in PapaBench. An extension to Edify’s [3] static analyser that detects variables influencing
execution times, that detects these influences would be helpful in isolating its effects. It is possible
that the large difference between minimum and maximum times found in our results are because of
these cross-task influences combined with simulating task orders that do not show up in normal usage
of PapaBench, though our work gives no indication on whether this is the case or not.

On top of that, as PapaBench is a software suite for only two cores, all our results only hold in the
case of a dual-core system.

6.2 Answering Research Questions
e RQ1: How to tackle the state-space problem?

The results show that while an approach is possible to reduce the state-space, the trade-off is that
accuracy is lowered. In our reduced task set setup, we ran a total of 98,304 + 40,320 = 138,624
simulations, where the full state-space would otherwise be 98,304 x 40, 320 = 3.964 x 10° simulations.
However, the highest execution time found in the main run was 115 us, 22.3% lower than the highest
time, 148 us, found in the validation run. And it is possible that the validation run is not the highest
execution time in our setup.

Moreover, even using this approach, we run into the issue of not being able to run enough simulations
to cover the entirety of PapaBench, as we had to reduce the task set amount from 13 to 7 with
selectively removing tasks that had a high amount of branches. Considering that our framework
operated on the DAS-4 supercomputer, which uses old hardware by today’s standard, as well as
being constrained to a maximum of 40 GB of data, it is quite likely that a stronger computer or
collection of computers on a cloud platform would lead to much more results per minute than what
we attained. Furthermore, we believe a further look into performance optimisations may be possible.
Unfortunately, even if this would lead to a 2x speedup for simulations per core and if it were possible
to run it at a linearly scaled fashion, which is unlikely, to 100,000 cores, validating the non-reduced

24

PapaBench set would still require

Total Simulations 1.208 x 1014

= = 54907252.4 minut
simulations/core/min X speedup X cores 11 x 2 x 100,000 manutes

or almost 105 full years of non-stop simulating. And this is without extra execution time influencing
factors such as cache state and interrupts taken into consideration. Simulating the full state-space
of the reduced PapaBench set without separating it into separate steps, 3.964 x 10° simulations as
mentioned above, would cost about 30 hours in this hypothetical case, but more than 2.5 years on
DAS-4. It still seems that it is infeasible to approach multi-core execution time distribution in this
fashion.

Whether the reduced accuracy of the execution time distribution is acceptable or not is unknown,
as we do not know of any execution time results of PapaBench.

e RQ2: Which emulation mode of gem5 can best be used in large state-space settings?

As we have demonstrated in Section 3, for the niche of embedded software that runs on real-time
operating systems or without an operating system, combined with running a lot of simulations in a
distributed fashion, SE mode fits very well. For software that runs on Linux, BSD or Android, FS
emulation mode is likely a better fit. The downside of that is that creating a framework such as the
one described in Section 4.1, one has to do multiple runs with the same settings to minimise overhead
factors as also described in that section. For software that falls outside of the named constraints,
such as software running on Windows Embedded or require FS mode but with a different operating
system than listed above, gemd simply cannot be used as these modes of operation are not currently
supported.

e RQ3: Does gemd currently provide the facilities to do a full WCET analysis for PapaBench?
During this research, a number of issues were identified with running the PapaBench benchmark:

e The Paparazzi project, upon which PapaBench is based on, includes hardware simulation using
AADL source code. This means that the autopilot and fly_by_wire executables get mapped
into using the same RAM areas and communicate with each other through that. PapaBench
however, creates two separate Linux executables that do not use and shared memory mechanism.
The communication between the two executables therefore is not available.

e Much like the previous point, interrupt handler functions are present in the C source code, but
they are never being called from anywhere. The AADL hardware specification connected the
functions with proper interrupts.

e An example task where these two points become a problem for execution time analysis is task
3, send_data_to_autopilot_task. This task is intended to send out some last radio signal values
over SPI from the fly_by_wire process to the autopilot process. Sending bytes over SPI normally
triggers interrupts that the sending processor has to handle, which can happen during the
execution of the current task. A similar process happens on the receiving processor, which has
to store incoming data in a buffer, to be read at a later time.

The intended behaviour of PapaBench is one we have not been able to simulate as gem5 does not
currently, to our knowledge, offer an architecture which includes SPI or UART devices nor offers
connecting user space functions with interrupts of those devices and the processors. This necessarily
means that any execution time distribution created with gem5 is not the worst case execution for
PapaBench. However, we do have to remark that the suitability of PapaBench to our scenario exceeded
our expectation. Were it not for the breadth of functions emulated in PapaBench, we would likely
not have found some of the aforementioned issues.

6.3 Threats to validity

e Although care has been taken to increase accuracy of the simulations, there are a lot of options
that have not been assessed in this paper. Examples include the lack of taking shared cache into

25

account, proper task dependency management e.g. starting tasks only when a previous task has
finished and variation of when a task starts relative to another task on a separate core as well
as task synchronisation methods, to ensure tasks are scheduled when other tasks are running
on the system.

e PapaBench aims to be a real-world benchmark, however the benchmark mode does not include
proper cross-task communication. Moreover, the interrupts in the program are available in the
source code, but never called. For this paper, we accepted this state because the focus is on
creating a baseline and that this point would be a good fit for future research. Furthermore, the
edits made to the benchmark as well as our given setup make it hard to compare the results to
external runs of PapaBench.

e Internal validity is also somewhat lacking in our framework. While we did what we call a
validation run, this validation run is also just a subset of the entire state-space of PapaBench,
reduced task set or otherwise. Reducing the task set further would allow us to analyse the entire
state-space, but reduce the diversity of tasks which would then be a threat to validity.

e Moreover, the results of this paper are certainly tailored to a niche: software tasks that run on
a POSIX system, a general lack or at least a very small number of system calls and no disk I/O
in the tasks. For embedded software this works, but outside that, it is likely that our results
fail to hold. On top of that, our research is specifically for the dual-core PapaBench, further
narrowing our niche.

6.4 Further research

As mentioned in Chapter 3, more time should be spent on validating our educated guess that back-
ground processes and the CPU scheduler are the main reasons which increase the simulation time of
the benchmarks in FS mode. Running the benchmarks under real-time settings under Linux would
be one approach we would suggest, another being synchronising task start on all cores.

A better approach to measuring execution times in multi-core settings with embedded software
might actually not be with gems. Given the aforementioned constraints on interrupts, differing
hardware architectures and non-Linux simulations with gemJ, it might be worthwhile to check if a
similar setup as ours can be used with a tool like AADS [14]. Having control over the definition of
the hardware as well as the software would likely yield a more accurate execution time distribution
than can be achieved with gemd.

Another interesting point is that while we test task order influencing on multiple cores in our
setup, which should be noticeable due to only using 1 memory rank in gemd, it seems that this is not
that great of an impact. Modifying variables the influence execution time seems to impact execution
times noticeably more than when tasks are scheduled relative to another task, on a different core.
This is likely the result of only using L1 caches: each core only requests intermittent batch access to
instructions and data for reading. Perhaps when dealing with a program that writes a lot more to
memory or when introducing L2 caches, which we only used in our SE vs FS comparison due to FS
mode requiring it, would yield more explanations as to why this appears to be so.

26

Bibliography

1]

Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K. Reinhardt, Ali Saidi, Arkaprava
Basu, Joel Hestness, Derek R. Hower, Tushar Krishna, Somayeh Sardashti, Rathijit Sen, Korey
Sewell, Muhammad Shoaib, Nilay Vaish, Mark D. Hill, and David A. Wood. The gem5 simulator.
SIGARCH Comput. Archit. News, 39(2):1-7, August 2011.

Fadia Nemer, Hugues Cassé, Pascal Sainrat, Jean-Paul Bahsoun, and Marianne De Michiel. Pa-
paBench: a Free Real-Time Benchmark. In Frank Mueller, editor, 6th International Workshop on
Worst-Case Execution Time Analysis (WCET’06), volume 4 of OpenAccess Series in Informatics
(OASIcs), Dagstuhl, Germany, 2006. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik.

B. Braams, S. Altmeyer, and A. D. Pimentel. Edify: An execution time distribution finder. In
2017 54th ACM/EDAC/IEEE Design Automation Conference (DAC), pages 1-6, June 2017.

Heiko Falk, Sebastian Altmeyer, Peter Hellinckx, Bjorn Lisper, Wolfgang Puffitsch, Christine
Rochange, Martin Schoeberl, Rasmus Bo Sgrensen, Peter Wagemann, and Simon Wegener.
TACLeBench: A Benchmark Collection to Support Worst-Case Execution Time Research. In
Martin Schoeberl, editor, 16th International Workshop on Worst-Case Execution Time Anal-
ysis (WCET 2016), volume 55 of OpenAccess Series in Informatics (OASIcs), pages 2:1-2:10,
Dagstuhl, Germany, 2016. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik.

EEMBC. EEMBC Autobench. http://www.eembc.org/benchmark/automotive_sl.php. [On-
line; accessed 24-July-2018].

Reinhard Wilhelm, Jakob Engblom, Andreas Ermedahl, Niklas Holsti, Stephan Thesing, David
Whalley, Guillem Bernat, Christian Ferdinand, Reinhold Heckmann, Tulika Mitra, Frank
Mueller, Isabelle Puaut, Peter Puschner, Jan Staschulat, and Per Stenstrom. The worst-case
execution-time problem—overview of methods and survey of tools. ACM Trans. Embed.
Comput. Syst., 7(3):36:1-36:53, May 2008.

A. Butko, R. Garibotti, L. Ost, and G. Sassatelli. Accuracy evaluation of gemb simulator system.
In 7th International Workshop on Reconfigurable and Communication-Centric Systems-on-Chip
(ReCoSoC), pages 1-7, July 2012.

F. A. Endo, D. Couroussé, and H. Charles. Micro-architectural simulation of in-order and out-of-
order arm microprocessors with gemb. In 2014 International Conference on Embedded Computer
Systems: Architectures, Modeling, and Simulation (SAMOS XIV), pages 266-273, July 2014.

Ashkan Tousi and Chuan Zhu. Arm research starter kit: System modeling using gem5, 2017.

gem5. Supported Architectures - gem5. http://gem5.org/Supported_Architectures. [Online;
accessed 23-July-2019].

Vrije Universiteit Amsterdam et al. DAS-4: Distributed ASCI Supercomputer 4. https://wuw.
cs.vu.nl/das4/. [Online; accessed 10-July-2019].

H. Bal, D. Epema, C. de Laat, R. van Nieuwpoort, J. Romein, F. Seinstra, C. Snoek, and
H. Wijshoff. A medium-scale distributed system for computer science research: Infrastructure
for the long term. Computer, 49(5):54-63, May 2016.

27

http://www.eembc.org/benchmark/automotive_sl.php
http://gem5.org/Supported_Architectures
https://www.cs.vu.nl/das4/
https://www.cs.vu.nl/das4/

[13] Skibiriski et al. Yann Collet, Przemystaw Skibinski. Zstandard - Real-time data compression
algorithm. https://facebook.github.io/zstd/. [Online; accessed 23-July-2019].

[14] R. Varona-Gémez and E. Villar. Aadl simulation and performance analysis in systemc. In
2009 14th IEEE International Conference on Engineering of Complex Computer Systems, pages
323-328, June 2009.

28

https://facebook.github.io/zstd/

